73 research outputs found

    The distance to the Vela pulsar gauged with HST parallax oservations

    Get PDF
    The distance to the Vela pulsar (PSR B0833-45) has been traditionally assumed to be 500 pc. Although affected by a significant uncertainty, this value stuck to both the pulsar and the SNR. In an effort to obtain a model free distance measurement, we have applied high resolution astrometry to the pulsar V~23.6 optical counterpart. Using a set of five HST/WFPC2 observations, we have obtained the first optical measurement of the annual parallax of the Vela pulsar. The parallax turns out to be 3.4 +/- 0.7 mas, implying a distance of 294(-50;+76) pc, i.e. a value significantly lower than previously believed. This affects the estimate of the pulsar absolute luminosity and of its emission efficiency at various wavelengths and confirms the exceptionally high value of the N_e towards the Vela pulsar. Finally, the complete parallax data base allows for a better measurement of the Vela pulsar proper motion (mu_alpha(cos(delta))=-37.2 +/- 1.2 mas/yr; mu_delta=28.2 +/- 1.3 mas/yr after correcting for the peculiar motion of the Sun) which, at the parallax distance, implies a transverse velocity of ~65 km/s. Moreover, the proper motion position angle appears specially well aligned with the axis of symmetry of the X-ray nebula as seen by Chandra. Such an alignment allows to assess the space velocity of the Vela pulsar to be ~81 km/s.Comment: LaTeX, 21 pages, 5 figures. Accepted for publication in Ap

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates

    Get PDF
    The relationship between species’ niche breadth (i.e. the range of environmental conditions under which a species can persist) and range size (i.e. the extent of its spatial distribution) has mostly been tested within geographically restricted areas but rarely at the global extent. Here, we not only tested the relationship between range size (derived from species’ distribution data) and niche breadth (derived from species’ distribution and co‐occurrence data) of 1255 plant species at the regional extent of the European Alps, but also at the global extent and across both spatial scales for a subset of 180 species. Using correlation analyses, linear models and variation partitioning, we found that species’ realized niche breadth estimated at the regional level is a weak predictor of species’ global niche breadth and range size. Against our expectations, distribution‐derived niche breadth was a better predictor for species’ range size than the co‐occurrence‐based estimate, which should, theoretically, account for more than the climatically determined niche dimensions. Our findings highlight that studies focusing on the niche breadth vs range size relationship must explicitly consider spatial mismatches that might have confounded and diminished previously reported relationships

    Role of Cajal Bodies and Nucleolus in the Maturation of the U1 snRNP in Arabidopsis

    Get PDF
    Background: The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 59 and 39 termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings: Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in,90 % of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance: Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Difference

    Role of Cajal Bodies and Nucleolus in the Maturation of the U1 snRNP in Arabidopsis

    Get PDF
    Background: The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 59 and 39 termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings: Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in,90 % of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance: Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Difference

    Ellenberg-type indicator values for European vascular plant species

    Get PDF
    Aims: Ellenberg-type indicator values are expert-based rankings of plant species according to their ecological optima on main environmental gradients. Here we extend the indicator-value system proposed by Heinz Ellenberg and co-authors for Central Europe by incorporating other systems of Ellenberg-type indicator values (i.e., those using scales compatible with Ellenberg values) developed for other European regions. Our aim is to create a harmonized data set of Ellenberg-type indicator values applicable at the European scale. Methods: We collected European data sets of indicator values for vascular plants and selected 13 data sets that used the nine-, ten- or twelve-degree scales defined by Ellenberg for light, temperature, moisture, reaction, nutrients and salinity. We compared these values with the original Ellenberg values and used those that showed consistent trends in regression slope and coefficient of determination. We calculated the average value for each combination of species and indicator values from these data sets. Based on species’ co-occurrences in European vegetation plots, we also calculated new values for species that were not assigned an indicator value. Results: We provide a new data set of Ellenberg-type indicator values for 8908 European vascular plant species (8168 for light, 7400 for temperature, 8030 for moisture, 7282 for reaction, 7193 for nutrients, and 7507 for salinity), of which 398 species have been newly assigned to at least one indicator value. Conclusions: The newly introduced indicator values are compatible with the original Ellenberg values. They can be used for large-scale studies of the European flora and vegetation or for gap-filling in regional data sets. The European indicator values and the original and taxonomically harmonized regional data sets of Ellenberg-type indicator values are available in the Supporting Information and the Zenodo repository

    Curr. Biol.

    No full text
    Seven Sm proteins, termed B/B', D1, D2F D3, E, F, and G, assemble in an ordered manner onto U snRNAs to form the Sm core of the spliceosomal: snRNPs U1, U2, U4/U6, and U5 [1-4]. The survival of motor neuron (SMN) protein binds to Sm proteins and mediates in the context of a macromolecular (SMN-) complex the assembly of the Sm core [5-9]. Binding of SMN to Sm proteins is enhanced by modification of specific arginine residues in the Sm proteins D1 and D3 to symmetrical dimethylarginines (sDMAs), suggesting that assembly might be regulated at the posttranslational level [10-12]. Here we provide evidence that the previously described pICIn-complex [13], consisting of Sm proteins, the methyltransferase PRMT5, pICIn, and two novel factors, catalyzes the sDMA modification of Sm proteins. In vitro studies further revealed that the pICIn complex inhibits the spontaneous assembly of Sm proteins onto a U snRNA. This effect is mediated by pICIn via its binding to the Sm fold, of Sm proteins, thereby preventing specific interactions between Sm proteins required for the formation of the Sm core. Our data suggest that the pICIn complex regulates an early step in the assembly of U snRNPs, possibly the transfer of Sm proteins to the SMN-complex

    Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    No full text
    Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths) with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species

    Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    No full text
    Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths) with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species
    corecore